A new immunosuppressive drug to prevent organ transplant rejection

Oriol Bestard


    Oriol Bestard


    Fundació Hospital Universitari Vall d’Hebron - Institut de Recerca (VHIR), Spain


    Organ, tissue and cell transplantation has become a global practice that can prolong and improve the quality of life for patients. Advances in harvesting, preservation, transplantation and immunosuppression techniques have improved the effectiveness of transplants. However, although the volume of organ transplants has grown exponentially over recent years, long-term transplant outcomes have not improved much in the last few decades. This is primarily due to the significant side effects of current immunosuppressive drugs, which are essential to prevent immediate transplant rejection but result in high associated morbidity and mortality.

    The project team has developed a second-generation immunosuppressive molecule, structurally modified to enhance its immunomodulatory properties and effectively prevent transplant rejection by suppressing the activity of T and B cells, which are the main immune system cells responsible for causing transplant rejection. This molecule inhibits the production of antibodies against the transplanted organ by B lymphocytes, thereby improving the immunosuppressive profile of the immunosuppressants currently in use, but with the important difference that it lacks the most relevant adverse effects associated with these drugs.

    In this phase, the objectives of the project are to compare the in vivo efficacy of this new immunosuppressive drug with respect to commonly used treatments in two experimental animal models, evaluate the mechanisms that prevent transplant rejection through the new molecule, conduct performance studies including the development of a stable production line for the drug and establish a pre-clinical regulatory strategy for technology transfer.


    Duacept, a novel bi-specific fusion protein to prevent transplant rejection


    Stage 2